Postreplicative joining of DNA double-strand breaks causes genomic instability in DNA-PKcs-deficient mouse embryonic fibroblasts.
نویسندگان
چکیده
Combined cytogenetic and biochemical approaches were used to investigate the contributions of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) in the maintenance of genomic stability in nonirradiated and irradiated primary mouse embryo fibroblasts (MEF). We show that telomere dysfunction contributes only marginally to genomic instability associated with DNA-PKcs deficiency in the absence of radiation. Following exposure to ionizing radiation, DNA-PKcs-/- MEFs are radiosensitized mainly as a result of the associated DNA double-strand break (DSB) repair defect. This defect manifests as an increase in the fraction of DSB rejoining with slow kinetics although nearly complete rejoining is achieved within 48 hours. Fifty-four hours after ionizing radiation, DNA-PKcs-/- cells present with a high number of simple and complex chromosome rearrangements as well as with unrepaired chromosome breaks. Overall, induction of chromosome aberrations is 6-fold higher in DNA-PKcs-/- MEFs than in their wild-type counterparts. Spectral karyotyping-fluorescence in situ hybridization technology distinguishes between rearrangements formed by prereplicative and postreplicative DSB rejoining and identifies sister chromatid fusion as a significant source of genomic instability and radiation sensitivity in DNA-PKcs-/- MEFs. Because DNA-PKcs-/- MEFs show a strong G1 checkpoint response after ionizing radiation, we propose that the delayed rejoining of DNA DSBs in DNA-PKcs-/- MEFs prolongs the mean life of broken chromosome ends and increases the probability of incorrect joining. The preponderance of sister chromatid fusion as a product of incorrect joining points to a possible defect in S-phase arrest and emphasizes proximity in these misrepair events.
منابع مشابه
Inhibiting DNA-PKcs in a non-homologous end-joining pathway in response to DNA double-strand breaks
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a distinct factor in the non-homologous end-joining (NHEJ) pathway involved in DNA double-strand break (DSB) repair. We examined the crosstalk between key proteins in the DSB NHEJ repair pathway and cell cycle regulation and found that mouse embryonic fibroblast (MEF) cells deficient in DNA-PKcs or Ku70 were more vulnerable to ionizin...
متن کاملOxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants
Cells deficient in a major DNA double-strand break repair pathway (nonhomologous DNA end joining [NHEJ]) have increased spontaneous chromosome breaks; however, the source of these chromosome breaks has remained undefined. Here, we show that the observed spontaneous chromosome breaks are partially suppressed by reducing the cellular oxygen tension. Conversely, elevating the level of reactive oxy...
متن کاملEnhanced Genotoxicity of Silver Nanoparticles in DNA Repair Deficient Mammalian Cells
Silver nanoparticles (Ag-np) have been used in medicine and commercially due to their anti-microbial properties. Therapeutic potentials of these nanoparticles are being explored extensively despite the lack of information on their mechanism of action at molecular and cellular level. Here, we have investigated the DNA damage response and repair following Ag-np treatment in mammalian cells. Studi...
متن کاملWRN regulates pathway choice between classical and alternative non-homologous end joining
Werner syndrome (WS) is an accelerated ageing disorder with genomic instability caused by WRN protein deficiency. Many features seen in WS can be explained by the diverse functions of WRN in DNA metabolism. However, the origin of the large genomic deletions and telomere fusions are not yet understood. Here, we report that WRN regulates the pathway choice between classical (c)- and alternative (...
متن کاملFunctional redundancy between the XLF and DNA-PKcs DNA repair factors in V(D)J recombination and nonhomologous DNA end joining.
Classical nonhomologous end joining (C-NHEJ) is a major mammalian DNA double-strand break (DSB) repair pathway that is required for assembly of antigen receptor variable region gene segments by V(D)J recombination. Recombination activating gene endonuclease initiates V(D)J recombination by generating DSBs between two V(D)J coding gene segments and flanking recombination signal sequences (RS), w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 65 22 شماره
صفحات -
تاریخ انتشار 2005